mirror of
https://codeberg.org/noisytoot/notnotdnethack.git
synced 2024-11-21 16:55:06 +00:00
Ron Nazarov
1cba15796a
-signed integer overflow in setrandom and check_reseed -shift exponent 38 with a 32-bit type in makedefs (ranged_attk) Also update makedefs ranged_attk to match the mondata version. This means that monsters with some ranged attacks now get correct difficulty. I didn't update the difficulty comments in monst.c. # Conflicts: # src/hacklib.c # src/mondata.c
240 lines
4.9 KiB
C
240 lines
4.9 KiB
C
/* SCCS Id: @(#)rnd.c 3.4 1996/02/07 */
|
|
/* NetHack may be freely redistributed. See license for details. */
|
|
|
|
#include "hack.h"
|
|
|
|
/* "Rand()"s definition is determined by [OS]conf.h */
|
|
# if defined(UNIX) || defined(RANDOM)
|
|
#define RND(x) (int)(Rand() % (long)(x))
|
|
# else
|
|
/* Good luck: the bottom order bits are cyclic. */
|
|
#define RND(x) (int)((Rand()>>3) % (x))
|
|
# endif
|
|
|
|
|
|
static int reseed_period = 0;
|
|
static int reseed_count = 0;
|
|
|
|
void
|
|
check_reseed(void)
|
|
{
|
|
reseed_count++;
|
|
if (reseed_count > reseed_period) {
|
|
FILE *fptr = NULL;
|
|
int rndbuf[2];
|
|
|
|
fptr = fopen("/dev/urandom","r");
|
|
if (fptr) {
|
|
fread((void *)rndbuf, sizeof(int),2,fptr);
|
|
fclose(fptr);
|
|
srandom((unsigned int) (time((time_t *)0)) + rndbuf[0]);
|
|
reseed_period = (rndbuf[1] % 700) + 10;
|
|
reseed_count = 0;
|
|
} else {
|
|
reseed_count = 0;
|
|
impossible("check_reseed failed to retrieve data");
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
rn2( /* 0 <= rn2(x) < x */
|
|
register int x)
|
|
{
|
|
check_reseed();
|
|
if(x <= 0) x = 1; //I prefer this behavior -CM
|
|
#ifdef DEBUG
|
|
if (x <= 0) {
|
|
impossible("rn2(%d) attempted", x);
|
|
return(0);
|
|
}
|
|
x = RND(x);
|
|
return(x);
|
|
#else
|
|
return(RND(x));
|
|
#endif
|
|
}
|
|
|
|
|
|
int
|
|
rnl( /* 0 <= rnl(x) < x; sometimes subtracting Luck */
|
|
register int x /* good luck approaches 0, bad luck approaches (x-1) */)
|
|
{
|
|
register int i;
|
|
check_reseed();
|
|
if(x<=0) x=1; //fixes a crash from feeding rnd a negative number. I'd rather have this behavior.
|
|
#ifdef DEBUG
|
|
if (x <= 0) {
|
|
impossible("rnl(%d) attempted", x);
|
|
return(0);
|
|
}
|
|
#endif
|
|
i = RND(x);
|
|
|
|
if (Luck && rn2(50 - Luck)) {
|
|
i -= (x <= 15 && Luck >= -5 ? Luck/3 : Luck);
|
|
if (i < 0) i = 0;
|
|
else if (i >= x) i = x-1;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
int
|
|
rnd( /* 1 <= rnd(x) <= x */
|
|
register int x)
|
|
{
|
|
check_reseed();
|
|
if(x<=0) x=1; //fixes a crash from feeding rnd a negative number. I'd rather have this behavior.
|
|
#ifdef DEBUG
|
|
if (x <= 0) {
|
|
impossible("rnd(%d) attempted", x);
|
|
return(1);
|
|
}
|
|
x = RND(x)+1;
|
|
return(x);
|
|
#else
|
|
return(RND(x)+1);
|
|
#endif
|
|
}
|
|
|
|
|
|
int
|
|
d( /* n <= d(n,x) <= (n*x) */
|
|
register int n,
|
|
register int x)
|
|
{
|
|
register int tmp = n;
|
|
check_reseed();
|
|
|
|
if (x < 0 || n < 0 || (x == 0 && n != 0)) {
|
|
impossible("d(%d,%d) attempted", n, x);
|
|
return(1);
|
|
}
|
|
while(n--) tmp += RND(x);
|
|
return(tmp); /* Alea iacta est. -- J.C. */
|
|
}
|
|
|
|
int
|
|
exploding_d(register int n, register int x, register int m)
|
|
{
|
|
register int tmp=0, cur;
|
|
check_reseed();
|
|
if(x < 2) return d(n,x) + m*n; //A die of size 1 or 0 would always explode.
|
|
#ifdef DEBUG
|
|
if (x < 0 || n < 0 || (x == 0 && n != 0)) {
|
|
impossible("exploding d(%d,%d) attempted", n, x);
|
|
return(1);
|
|
}
|
|
#endif
|
|
while(n--){
|
|
cur = RND(x) + 1;
|
|
while(cur == x){
|
|
tmp += cur+m;
|
|
cur = RND(x) + 1;
|
|
}
|
|
tmp += cur+m;
|
|
}
|
|
return(tmp); /* How do you get the average of an exploding die?
|
|
If you ask a friend who's good at math,
|
|
he'll tell you a long explanation about Sequences and Limits,
|
|
of which you'll forget half.
|
|
What you'll remember is the conclusion:
|
|
|
|
The average of an exploding Dn tends to the average of a
|
|
regular Dn (which is (n+1)/2) multiplied by n/(n-1)
|
|
|
|
-1d4chan wiki entry on exploding dice, retrieved 2/13/2012
|
|
|
|
.:, the average of this function tends to n*( ((x+1)/2 + m) * x/(x-1) )
|
|
The minimum value is n + n*m, and the maximum is unbounded
|
|
-CM */
|
|
}
|
|
|
|
int
|
|
lucky_exploding_d(register int n, register int x, register int m)
|
|
{
|
|
register int tmp=0, cur;
|
|
check_reseed();
|
|
if(x < 2) return d(n,x) + m*n; //A die of size 1 or 0 would always explode.
|
|
#ifdef DEBUG
|
|
if (x < 0 || n < 0 || (x == 0 && n != 0)) {
|
|
impossible("exploding d(%d,%d) attempted", n, x);
|
|
return(1);
|
|
}
|
|
#endif
|
|
while(n--){
|
|
cur = x-rnl(x);
|
|
// pline("damage %d",cur);
|
|
while(cur == x){
|
|
tmp += cur+m;
|
|
cur = x-rnl(x);
|
|
// pline("looping %d",cur);
|
|
}
|
|
tmp += cur+m;
|
|
}
|
|
// pline("damage total %d",tmp);
|
|
return(tmp);
|
|
}
|
|
|
|
int
|
|
unlucky_exploding_d(register int n, register int x, register int m)
|
|
{
|
|
register int tmp=0, cur;
|
|
if(x < 2) return d(n,x) + m*n; //A die of size 1 or 0 would always explode.
|
|
#ifdef DEBUG
|
|
if (x < 0 || n < 0 || (x == 0 && n != 0)) {
|
|
impossible("exploding d(%d,%d) attempted", n, x);
|
|
return(1);
|
|
}
|
|
#endif
|
|
while(n--){
|
|
cur = rnl(x);
|
|
// pline("damage %d",cur);
|
|
while(cur == x){
|
|
tmp += cur+m;
|
|
cur = rnl(x);
|
|
// pline("looping %d",cur);
|
|
}
|
|
tmp += cur+m;
|
|
}
|
|
// pline("damage total %d",tmp);
|
|
return(tmp);
|
|
}
|
|
|
|
|
|
int
|
|
rne(register int x)
|
|
{
|
|
register int tmp, utmp;
|
|
|
|
utmp = (u.ulevel < 15) ? 5 : u.ulevel/3;
|
|
tmp = 1;
|
|
while (tmp < utmp && !rn2(x))
|
|
tmp++;
|
|
return tmp;
|
|
|
|
/* was:
|
|
* tmp = 1;
|
|
* while(!rn2(x)) tmp++;
|
|
* return(min(tmp,(u.ulevel < 15) ? 5 : u.ulevel/3));
|
|
* which is clearer but less efficient and stands a vanishingly
|
|
* small chance of overflowing tmp
|
|
*/
|
|
}
|
|
|
|
int
|
|
rnz(int i)
|
|
{
|
|
register long x = i;
|
|
register long tmp = 1000;
|
|
tmp += rn2(1000);
|
|
tmp *= rne(4);
|
|
if (rn2(2)) { x *= tmp; x /= 1000; }
|
|
else { x *= 1000; x /= tmp; }
|
|
return((int)x);
|
|
}
|
|
|
|
|
|
/*rnd.c*/
|